



# Update of the NCEP EMC Atmospheric Composition Modeling Projects

Jeff McQueen, Jianping Huang, Ho-Chun Huang, Li Pan, Perry Shafran, Jack Kain, Partha B., Jun Wang, Sarah Lu, Binyu Wang &

OAR/ARL (Pius Lee) , ESRL/PSD (Jim Wilczak) , ESRL/GSD (Georg Grell) et al. 09/27/2018

# CMAQ Current Development/Testing

#### FY19Q1 implementation

• NEI 2014 V2 Anthropogenic Emissions Update (ARL)

#### • Wild-Fire Smoke Emissions update (Ho-Chun Huang)

- Update to NESDIS Hazards Mapping System Fire locations (8/1/18 into operations)
- Inclusion of diurnal smoke temporal emissions
- tests with emission strength, biomass area burned, diurnal profiles

#### • Unified Bias Correction (ESRL/PSD, Jianping Huang)

- Rare event adjustments
- PM2.5 operational, Ozone experimental (12/26/18

#### Possible FY19Q4 Updates

- FV3 met driver tests (Jianping Huang, para8 running)
  - Also used for 72 hr extension
  - Underprediction of PM2.5
    - Related to late onset of PBL in AM and overmixing in afternoon ?
      - (C. Bernier, E. Yang summer student evaluations

#### Improved LBCs from NGAC/GEOS-Chem (ARL)

#### Improved Emissions

- Anthropogenic (ARL)
- Smoke: NESDIS fused GBBEPx emissions





- Real-time daily smoke/dust predictions:
  - Wild fire smoke (06 UTC, CONUS, AK, HI) and dust (CONUS, 00/12 UTC)
- V7.5 by Nov. 11, 2018
  - Radiological/Chemical Dispersion (RSMC/SDM): ¼ degree GFS, native grids, FV3 coupling
  - DHS/HLS: HRRR 3 km driver for events
  - Comprehensive Test Ban Treaty Org (CTBTO) Source Term: ½ degree GFS
  - Volcanic Ash (VAAC) : ¼ GFS, native grids FV3 coupling
- Transfer Coefficients Matrix technique (G. Rolph, ARL)
  - Allows quick update of source term (eg: Fukushima: numerous updates during multimonth event)
- Dispersion Ensembles
  - Volcanic Ash/Radiological, based on SREF
  - Test GEFS C384, CAM ensemble when ready







# NGAC V3 (FY20)

- FV3GFS-GSDChem (Li Pan, Jun Wang, Partha B. & GSD)
  - One member of GEFS Q2FY20
  - NRT runs at GSD: C384L64 (25 km) to 7 days
  - WRF-Chem version of GOCART
    - Sea salt algorithm to be updated to latest NASA 3 bin system
    - Update emission to use NESDIS GBBEPxV2 algorithm with FRP for plume rise
    - ARL dust scheme to be tested
  - Community Emissions Database System (CEDS) for anthropogenic SO2/SO4
  - Issues with too much vertical mixing with high concentrations aloft



FV3GFS-GSDChem C384 ~ 25 km total integrated https://fim.noaa.gov/FV3chem/





| Model                                  |                                                                             |
|----------------------------------------|-----------------------------------------------------------------------------|
| CMAQ V5 Prod vs PARA5                  | http://www.emc.ncep.noaa.gov/mmb/aq/cmaq/web/html/                          |
| CMAQ total column PM                   | http://www.emc.ncep.noaa.gov/mmb/hchuang/web/html/cmaq<br>_pm25_column.html |
| PROD vs PROD PM<br>Bias corrected      | http://www.emc.ncep.noaa.gov/mmb/aq/cmaqbc/web/html                         |
| PARA5 vs PARA5 O3/PM<br>Bias corrected | http://www.emc.ncep.noaa.gov/mmb/aq/cmaqparabc/web/html                     |
| PARA5 vs FV3-CMAQ<br>PARA8             | http://www.emc.ncep.noaa.gov/mmb/aq/cmaqpara8/web/html                      |
| Verification                           | http://www.emc.ncep.noaa.gov/mmb/aq/fvs/web/html/regular.<br>html           |
| Text files                             | http://www.emc.ncep.noaa.gov/mmb/aq/sv/grib                                 |
| Met comparisons<br>NAM vs Nest, FV3    | http://www.emc.ncep.noaa.gov/mmb/aq/smart/web/html/nam.<br>html             |
| fv3gfs evaluations                     | http://www.emc.ncep.noaa.gov/users/Alicia.Bentley/fv3gfs 5                  |





#### Current

- CMAQ Ozone/PM2.5 : AIRNOW sfc Obs
  - 1h, daily max avg: std + threshold
  - Overlay maps
- HYSPLIT: NESDIS satellite smoke/dust products
- NGAC (Partha B.)
  - AERONET AOD pointstat
  - MODIS/MERRA2 AOD gridstat
- Meteorology: NAM, Nest, FV3, HRRR

#### • Transition to METPlus and/or MONET

- Add GOES 16/17, VIIRS AOD
- NO2/SO2, Aerosol species (IMPROVE, CASTNET...)
- Ozonesondes/ lidar profiles
- PBLH from Ceilometers, lidars
- Continued analyses from forecaster





NCEP

ROD DAY1 OZHXO8 (PPB) 20180709 122 CYC-





### $O_3$ bias correction evaluation

August, 2018



NEI2014V2 emissions: Slightly hotter over East, improved west ESRL bias correction: removes overall biases but overshoot after smoke event



106.0 85.5 70.5 65.0 54.5

> 50.0 45.0 40.0 30.0

### August 16, 2018 Day 1: O<sub>3</sub> 8 h daily Max



Bias correction Improved false alarm over NE Maryland Bias correction Improved overprediction over LIS, even though smoke NCEP



### PM2.5 1h daily Max Day 1 Valid August 29 2018





PROD DAY1 PHMX01 (UG/M3) 20180829 122 CYC-



EXP - OPER BC agn DRY1 O1 hr ave PMMX from 20180829 12 UTC Run

Bias correction can struggle around episodic Events (eg : wild-fire smoke)



## Near-term plans

#### Q1FY19 CMAQ implementation : Dec 26, 2018 or sooner

- For CONUS domain run:
- Include NEI 2014v2 emissions
- Include diurnal temporal smoke emissions
- Implement unified bias correction for ozone/PM w/ rare events correction
- AK/HI domain:
- Update AK/HI domains to current CMAQ version (V5.0.2)

#### **Current Challenges**

- Transition from manual to HMS fire information hurt predictions
  - Information on source strength/duration lost

Recommend: use Global Biomass Burning Emission Product with FRP for strength & plume rise

- Inclusion of smoke from outside CMAQ domain needed. Recommend: Test FV3GFS-GOCART as boundary conditions
- FV3GFS over-mixing :
  - Examine PBLH, Td bias in FV3→cause of FV3CMAQ PM error (over-mixing) ?
- Begin evaluation of FV3GFS-GOCART C384 runs w/ various configurations:
  - ARL dust scheme, SAS conv. Mass mixing, use GBBEPx smoke emissions, NASA Sea salt
  - Transition to METPlus (include satellite AOD, AERONET for CMAQ)





11

#### Implementation Plan for FV3-Chem (FY2018-2021)

|                                  | FY18                                                                                                                                                                                                                                                                                                                                                                               | FY19                                                  |                  |                                                      |                    | FY20                        |                               |                                                      |                     | FY21        |                                                                              |                    |                   |                    |                |                    |
|----------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------|------------------|------------------------------------------------------|--------------------|-----------------------------|-------------------------------|------------------------------------------------------|---------------------|-------------|------------------------------------------------------------------------------|--------------------|-------------------|--------------------|----------------|--------------------|
| FV3Chem                          | Q1                                                                                                                                                                                                                                                                                                                                                                                 | Q2                                                    | Q3               | Q4                                                   | Q1                 | Q2                          | Q3                            | Q4                                                   | Q1                  | Q2          | Q3                                                                           | Q4                 | Q1                | Q2                 | Q3             | Q4                 |
| FV3GFS-<br>Chem<br>Development   | NEMS coupl<br>GOCART<br>component                                                                                                                                                                                                                                                                                                                                                  | er and                                                |                  |                                                      |                    | Devel<br>2 way<br>physio    | op initi<br>cpling<br>cs; upd | al<br>to GFS<br>. emiss                              | ions                |             |                                                                              |                    |                   |                    |                |                    |
| FV3GFS-<br>Chem<br>Configuration | Test FV3GFS<br>1-way coupl                                                                                                                                                                                                                                                                                                                                                         | FV3GFS-Chem, resolution,<br>y coupling, increase 25km |                  |                                                      |                    |                             |                               | Test various 2-way<br>cpling/smoke emissions<br>opts |                     |             |                                                                              |                    |                   |                    |                |                    |
| FV3-Chem DA                      |                                                                                                                                                                                                                                                                                                                                                                                    |                                                       | Test, e<br>Op GS | st, eval; transition VIIRS, other AOD DA to<br>o GSI |                    |                             |                               |                                                      |                     |             |                                                                              |                    |                   |                    |                |                    |
| FV3GFS-<br>Chem Evaluation       |                                                                                                                                                                                                                                                                                                                                                                                    |                                                       |                  | Final I<br>config<br>retros                          | V3GFS<br>Juratio   | 5-Chen<br>n* & p<br>eal-tim | n V1<br>erform<br>e runs      |                                                      |                     |             | Final glbl config (2-way cpl<br>to rad and/or microphys),<br>fire plume rise |                    |                   |                    |                |                    |
| FV3GFS- Chem<br>T2O              |                                                                                                                                                                                                                                                                                                                                                                                    |                                                       |                  |                                                      |                    |                             | V1: Im<br>FV3GF<br>Chem       | plem.<br>S-                                          |                     |             |                                                                              |                    |                   |                    | V2: A<br>2-way | OD DA;<br>coupling |
| FV3SAR-<br>Chem                  |                                                                                                                                                                                                                                                                                                                                                                                    |                                                       |                  | Dev. n<br>for CB                                     | iew coi<br>-VI che | upler<br>em                 | Config<br>(CB-VI              | gure/tes<br>, Aero)                                  | st adv. (<br>w/ FV3 | chem<br>SAR | Retros & RT Optimize FV<br>runs 3SAR<br>Chem FV3SAR -Chem                    |                    |                   | n.<br>R -Chem      |                |                    |
| Advance-<br>ment of FV3-<br>Chem |                                                                                                                                                                                                                                                                                                                                                                                    |                                                       |                  |                                                      |                    |                             |                               |                                                      |                     |             | Devel<br>JEDI, I                                                             | op, cou<br>nline r | uple to<br>egiona | adv. Pł<br>I tests | nysics, T      | Transition to      |
|                                  | <ul> <li>* Proposed changes for FV3GFS-Chem: 1) Couple with updated FV3-GFS physics/dynamics; 2) Increase horizontal resolution to 25 km; and 3) Assimilate VIIRS AOD</li> <li>* Proposed changes for Reg FV3SAR-Chem(CB-VI): (1) Couple with advanced physics &amp; reg. stand-alone FV3; (2) Test inline and offline approaches; (3) Update emissions to current year</li> </ul> |                                                       |                  |                                                      |                    |                             |                               | VIIRS<br>ysics<br>ions                               |                     |             |                                                                              |                    |                   |                    |                |                    |





# 3 Year Plan

- Strategic Implementation Plan for Atmospheric Composition → FV3-Chem
  - FV3GFS-GOCART (online, C384): Q2FY20
    - Coordination with GSD on updated version of GOCART
      - Biomass Burning Emissions: GBBEPx vs GSD FRP
      - Dust, Sea-salt processes
    - Coordination with Aerosol DA project
  - FV3SAR-CMAQ (online ?, ~10 km) : >FY21
    - At least 5X increase in compute resources ( > 100 nodes)
    - CB-VI gas-phase chemistry





# Performance of CMAQ PM<sub>25</sub> Simulation based on new HMS Fire Processing Routine

Ho-Chun Huang, Jeff McQueen, Jianping Huang,Perry Shafran, Li Pan, Jack Kain, Youhua Tang, PiusLee, Ivanka Stajner, and Jose Tirado-Delgado



# Why updating fire emissions code?

- Interim NESDIS HMS processed fire information system (w/ GOES-16)
  - Used operationally from April 11-July 31, 2018.
  - NESDIS HMS group discontinues the manual inspection of HMS fire detections because of increase number of fire detection from GOES-16 observation.
    - Can not remove false positive and add false negative
    - Does not have fire duration information
    - Can not increase fire strength (based on the smoke comparison between fires)
  - Interim solution only has manual inspection to west of 102W in the CONUS domain.
  - All fires in a 10 km<sup>2</sup> gridded area are represented with only one HMS fire information.
    - Will greatly reduce HYSPLIT fire intensity that depends on the number of HMS fire enclosed in each HYSPLIT grids
- New HYSPLIT/BlueSky fire processing based on HMS fire detections (w/ GOES-16)
  - New automated system is used operationally on August 1 2018.
  - Aggregate all satellite fire detections, all geostationary and orbital, in a 0.01°x0.01° grid.
    - Treat multiple/duplicate fires as a single fire If HMS fire detections are close enough
  - Identify HMS fire and starting time of each grids with more than one detection.
  - Assume 24 hour fire duration
    - Current fire detection information does not have adequate data to determine fire duration
  - Change burn-area per HMS fire from 10% to 8% of 1km<sup>2</sup> HMS fire resolution



201808130600

**OBS** 

DATE

201808190900

( 12 UTC CYCLE )

201808070300

2018

201808010000

20180825120











Need good estimates of emissions and heat of remote fires

Added NGAC LBC will make it worse (Jianping)







The comparison of surface  $PM_{25}$  concentration between modeled and AIRNow observations seems to indicate **weaker**  $PM_{25}$  emissions from wildfire. However, the NW US was frequently influenced by the smoke plume from British Columbia, Canada (as seen in GOES-16 images) during this period. Majority of the underestimates may come from missing smoke  $PM_{25}$  LBC.





HYSPLIT<sub>20180801\_t06z\_Backward\_24hr\_Analysis\_Run</sub>







Intensive fires activities from BC Canada in August (e.g., 08/01-02, 08/06-12, 08/14-16, and 08/18-24)

#### Using GOES-16 RGB animation to find the source and transport of fire smoke **(NCEP)**

SEATHS





#### The RGB is a column integrated product and can not reveal the height of smoke plume traveled.



201808212157

- Observed Canadian smoke plume moving southward along coastal area and toward NW US.
- Observed smoke plume from N California and Oregon fires moving eastward (may join-force with Canadian smoke plume) to Lower Mississippi Valley









Use CMAQ column integrated PM<sub>25</sub> map to diagnosis the transport of fire smoke plume originated inside CMAQ domain

http://www.emc.ncep.noaa.gov/mmb/hchuang/web/html/cmaq\_pm25\_column.html

**CMAQ PM25 Column Total** 

• Use HYSPLIT/Smoke particle model to diagnosis potential transboundary impact of smoke plume from Canada



the major source of the PM25 in the Northern Plains



Identify the PM<sub>25</sub> source from Canada that impacts the NW and the northern Plains, which can not be picked up by CMAQ results.







### CMAQ PM<sub>25</sub> Performance in August 2018

- From satellite images and CMAQ verification, trans-boundary transport of smoke PM<sub>25</sub> from Canada was shown to be important to the Western, Midwest, and Northeastern US and Northern Plain. Occasionally, it also impacted the Lower-Mississippi Valley area.
- Considering the missing trans-boundary impact from Canadian smoke plume in CMAQ, CMAQ PM<sub>25</sub> simulations are doing surprisingly well showing fire smoke PM<sub>25</sub> impact in the Northern Plain and NE US.
- Need to study more on the SW US underestimate other than Canadian smoke plum impact such as local emissions.
- Need to fix consistent over-estimation in the SE US.
- Bias-correction results remains to have problem in biomass burning events (except third events in the Northern Plain).



#### USFS burn-area and fire type Maps





#### **Applying USFS data for future improvement**

- "Burn-area per HMS Pixel" as a function of 8 selected biomass types should help to improve the problem of single value burn-area percentage (8%) currently incorporated in operational HYSPLIT.
- To assign eastern US fires as prescribed/agriculture fire
- To test the NESDIS aerosol group's GBBEPx tailored for CMAQ model, i.e., PM25 emission and FRP (for plume rise computation).







# Development and Testing of Off-line Coupling for FV3GFS/CMAQ

Jianping Huang, Jeff McQueen, Ho-Chun Huang, Perry Shafran,Youhua Tang, Pius Lee, Jack Kain, Binyu Wang, Ivanka Stajner, and Jose Tirado-Delgado

Sept. 27, 2018





### Motivation

- Current North American Model (NAM, 12 km) will retire in the near future. A new GFS model built up on the GFDL Finite-Volume Cubed-Sphere (FV3) dynamical core is available for driving regional air quality model;
- To evaluate impact of meteorological inputs on air quality predictions;
- Used for a baseline to verify the inline coupling system FV3CMAQ which is under development;
- Used for a backup in case the online system can not meet the operational time requirement.



#### A flow-chart of the FV3GFS-CMAQ system (new Changes as indicated by the red dashed boxes)



### **Offline coupling of FV3GFS/CMAQ**







#### 05 UTC on Aug. 15, 2018









### A summary of compared cases

| Cases            | Met driver   | Emissions       | LBC for PM         |
|------------------|--------------|-----------------|--------------------|
| Operational      | NMMB (12km)  | NEI2005/NEI2011 | NGAC without smoke |
| Operational_Bias |              |                 |                    |
| PARA5            | NMMB(12km)   | NEI2014         | NGAC without smoke |
| PARA5_Bias       |              |                 |                    |
| PARA8            | FV3GFS(13km) | NEI2014         | NGAC without smoke |
| PARA82           | FV3GFS(13km) | NEI2014         | NGAC with smoke    |









### Evaluation of predicted PM<sub>2.5</sub> (Aug. 2018)



### $\mathrm{PM}_{\mathrm{2.5}}$ under-predicted on those wildfire days over WUS and better agreement over EUS





### Evaluation of predicted PM<sub>2.5</sub> (Aug. 2018)







### Factors causing PM<sub>2.5</sub> underpredictions



#### Over-predicted PBL heights by FV3GFS

by excluding smoke LBCs



### **Summary**



### • Ozone predictions

- Improve over WUS but slightly over-predicted over EUS
- Overall is competitive

### PM<sub>2.5</sub> predictions

- Under-predicted during daytime and a sharp increase during the morning transition hours
- Over-predicted PBL heights and excluding smoke import from Canada are the two main factors causing the under-predictions
- Too much mixing by FV3GFS EDMF PBL scheme??